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IMPURITY DISPERSION IN NONUNIFORM FLOWS 

A. I. Moshinskii UDC 532.517.2 

The theory of impurity dispersion in tubes owes its origin to the work of Taylor [i], 
where the equation of diffusion was derived with constant coefficients for the impurity 
concentration averaged over the cross section, this equation replacing the local diffusion 
equation with convective terms dependent on the coordinate transverse to the flow. Aris 
[2] subsequently refined the value of the coefficient of effective diffusion (dispersion), 
he proposed formulas for the coefficient of dispersion in a tube with an arbitrary lateral 
cross section, and he refined the areas of applicability for the Taylor theory as one which 
is asymptotic for sufficiently long times. At the present time, the theory of dispersion 
is covered in a large number of studies. We can cite a number of these, containing unique 
approaches to the problem [3-5] and refining the Taylor-Aris model for lower time values, 
and then [6, 7], developing the theory in various directions. 

A significant feature of the above-cited and similar studies on the theory of disper- 
sion is the uniformity of fluid motion and the independence of the velocity component rela- 
tive to the longitudinal coordinate, thus limiting the applicability of the theory, essen- 
tially, to prismatic tubes. Whereas in nature and in technology one frequently encounters 
nonuniform flows that are, in a certain sense, similar to the flow in tubes, in order to 
describe the propagation of impurities through these tubes it would be desirable to derive 
the equations of equivalent diffusion, analogous to the Taylor dispersion equation. The 
solution of this problem for a number of cases is precisely the aim of this study. 

i. Dispersion of Impurities in Elongated Zones, in the Nonuniform Flow of a Fluid. 
Elongation of a zone indicates that one of the measurements of the flow region considerably 
exceeds the two remaining measurements, and it is the propagation of the impurity precisely 
in that direction that is of interest to us. Flows of this kind are formed in the stagna- 
tion regions of various pieces of equipment, in tubes when barriers are present, etc. Here 
and below, we will conduct our study with a coordinate system that is either nonmoving or 
moving at some mean velocity, as well as for cases in which there is no mean motion in any 
of the directions we have selected. We will assume the flow of the fluid to be laminar, 
and the fluid itself to be incompressible. Under these assumptions, the equation of convec- 
tive diffusion in dimensionless coordinates has the form 

( ) - -  a% e~a~c ac ac ar a~ = a% + ~ + __ (I.i) ~-  + ePe u ~ + v--f] + w T- f ax ~ ay az 2" 
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where x = X/a, y = Y/a, z = Z/s e = a/s Pe =aw*/D, t = D~/s 2. Here X, Y, Z, and �9 are 
the dimensional coordinates and time; a is the characteristic dimension of the region in 
the X, Y plane; s is the characteristic dimension in the direction of the Z axis; D is the 
coefficient of molecular diffusion; w* is the scale of velocity in the Z direction, which 
is connected to the scale v* in the X- and Y-directions by the relationship v*s = w*ia, 
following out of the equation of continuity 

bu/Ox + oday + aw/Oz = o. ( 1 . 2 )  

We will assume that E ~ i. The choice of the orders of magnitude in the terms of 
Eq. (I.i) may prove to be somewhat artificial; however, it corresponds to the Taylor pro- 
cedure of successive approximations [i]. Later on we will prove that utilization of the 
methods from the theory of perturbations [8, 9] will bring us, in this particular case, 
to the Taylor and Aris results. Use of the method of perturbations serves as a more flexible 
tool by means of which, in the case of need, we can find correction factors for dispersion 
equations of the Taylor-Aris type. Apparently, the results obtained by the method of per- 
turbations in such problems exhibits a more common significance (not only in the case of 
small ~). This is a result of the fact that the theory of dispersion can be used in the 
case of sufficiently long periods of time, and it is probable that certain of the scales 
of length that entered into the formulation of the problem to be characteristic, owing to 
the diffusion i.e., "spreading out" of the initially specified concentration profiles, etc. 
At the same time, the asymptotic nature of the theory of dispersion has been studied in 
detail [2, 3, etc.], and the derivation of the identical results through the method of per- 
turbations and through methods containing no small parameters may serve as some justifica- 
tion of the reliability of our choice for the small parameter and for the possibility of 
extending these results into the region of larger e. 

Equation (i.i) should be enhanced with the initial and boundary conditions, from which 
the following are of significance to us: 

at~an ]~ = o, ? = ~2. B1; ( 1 . 3 )  

cl$= 0 = F(x, y, z). ( 1 . 4 )  

We will look for the solution of problem (1.1)-(1.4) in the form of the expansion c = c o + 
ec z + g2c 2 + .... which on substitution into Eq. (i.i) and into boundary condition (1.3) 
will give us the following sequence of problems: 

hCo = 0, acolOnlv= 0; ( 1 . 5 )  

[ ac o ac o a%] a.~%l Ac l = P e . u - ~ + v - ~  +w-~f~j, only=O; ( 1 . 6 )  

Act = Pe[uOci_l/Ox + vOci_Jag + woci_JOz]- 
--O~ci_Jaz 2 + aci_jat, Oc/an[~ - -  O, i = 2, 3 . . . . .  ( 1 . 7 )  

where ~ = ~2/8x 2 + 82/By2 is the two-dimensional Laplace operator. We should note that 
there exist no time derivatives of the unknown functions in the equations of problems (1.5)- 
(1.7), which tells us that the perturbations are singular in nature and that for complete 
analysis we have to resort to a finer time scale, namely internal time [8, 9]. 

The solution of problem (1.5) will be the as yet unknown function of z and t, i.e., c o = 
c0(z, t). Then, using the Green's function G for the Neumann problem (1.6), we can write 

its solution in the form [i0] 

aCo ~ " , 
c 1 = Pe ~ -  J w (~. vl, z) G (x, y, ~, vl) d~ d r  l + cl (z, t) ( 1 . 8  ) 

g~ 

(cff ~ is an as-yet indeterminate function of z and t). We will now integrate Eq. (1.7) over 
the section ~ for i = 2. Using (1.8), the Green's theorem, the continuity equation (1.2), 
and the conditions of impenetrability of u, v = 0 on the y contour of the region in the 
x, y plane, we will obtain 

acJ(?t = b { [ i + Pe2O* (z) l aco/OZ }/c)z, ( 1 .9  ) 
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which is the dispersion equation that serves to generalize the Taylor and Aris relation- 

ships. Here 

D * =  7 w (x, g, z) dx dg w (~, ~l, z) G (x, g, ~, ~l) d~ tt~ t ( 1 . 1 0 )  
f~ 9 

is the coefficient of equivalent diffusion. In the particular case of flows in which w 
is independent of z, formulas (1.9) and (i.i0) coincide with the Taylor-Aris formulas (we 
did not take into consideration the possible relationship between the coefficient of diffu- 
sion and the x and y coordinates, hypothesized in [2] and of no fundamental significance 
in the case of our method), and this is easily proved by turning to dimensionless coordi- 
nates. 

Let us represent the Green's function in the form of the sum 

.% ~i(x, y) (~, 
G ( x ,  y, ~, +1) = - -  

i = l  �9 ~Vi ' 

where ~i are the normalized eigenfunctions of the Neumann problem in region ~, satisfying 
equation A~ i + %~i = 0, i = i, 2 ..... while the eigenvalues h i of the problem are posi- 
tive, and we thus come to the expression 

2 

o* = • • [ C w (x, v, r,(x v> dx dv ( 1 . 1 1 )  

from which the positiveness of D* is obvious and which can be utilized to calculate or esti- 
mate D* by various methods. 

A significant difference in formulas (i.i0) and (I.ii) from those conventionally used 
in the nonsteady equations of the theory of dispersion is the relationship between D* and 
the z coordinate. This is particularly important for large values of the Pe number, which 
is typical of dispersion problems when the coefficient D is considerably smaller than the 
"convective" part aaw*2D*/D of the dispersion factor, virtually throughout the entire re- 
gion of flow, with the exception of the surroundings about those points z at which w in 
conjunction with D* vanish. This latter situation may arise at solid surfaces where w ex- 
hibits a zero value of second order, while D* has a zero fourth-order value, and also on 
liquid surfaces separating circulation zones, where D* exhibits a second-order zero value. 
These circumstances allow us to construct local (boundary-layer) equations which, when made 
appropriately dimensionless, can be written in the form 

acotOt = ~ [ ( t  + z4)acolOz]/Oz, 
OCo/Ot = ~[(i + zDOco/Oz]/Oz. 

These  e q u a t i o n s ,  d e s c r i b i n g  t h e  e x c h a n g e  o f  mass n e a r  t h e  p o i n t s  where w = O, in  a known 
time scale frequently determine the progress of the entire process, since in the remaining 
portion of the z region concentration is rapidly evened out (when Pe m i). We note that 
the second equation can be used to calculate the exchange of mass in closed cavities stream- 
lined with an external flow in accordance with the Lavrent'ev scheme [ii, 12]. 

The initial condition for Eq. (1.9) is obtained by means of the joining procedure with 
an internal solution [8, 9] describing the process for limited times. Let us introduce 
the "internal" time ~ = t/E a. For the function of the zeroth approximation of the internal 
solution with respect to s, after passing to the limit r + 0, we derive the equation 

ac~ $ = Ac~ ( 1 . 1 2 )  

where the degree sign marks the internal solution. Having integrated Eq. (1.12) over the 
entire region, utilizing the Green's theorem, resorting to boundary conditions (1.3), and 
then having integrated over ~ with consideration of the initial condition (1.4), we find 
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c~ yF(x,y ,z)  dxdy. 
(1.13) 

Now, passing to the limit ~ + ~ in Eq. (1.13) and using the principle of limit joining 
c~ y, z, ~) = c0(z, 0), we obtain 

I SF(x ' Y, z)dzdy (1.14) Co It=o = <f> = ~- 

as the unknown initial condition for Eq. (1.9); s is the dimensionless area (referred to 
a '=) of the transverse cross section of the channel. Extending the described procedure, 
we can find the equation for the function c I (more precisely, cz*), analogous to (1.9), 
but with source terms, and a pertinent initial condition. 

2. Dispersion of the Impurity in Thin Liquid Films. Let us examine the general case 
of dispersion in some arbitrary orthogonal coordinate system xl, x2, x3, where the extent 
of the region in the x 3 direction is considerably smaller than in the x z and x 2 directions. 
The equation of convective diffusion in dimensionless variables is written in the form 

where xl = Xl/a; x2 = X2/a; x3 = X3/s v = s Pe = v*s T = D~/a 2. The velocity com- 
ponents satisfy the continuity equation 

O(u~HaHa)/Ox~ "4- O(u~HtHa)lOxz + O(uaHtH~)/O~ = O, 

which ,  as  b e f o r e ,  e s t a b l i s h e s  t h e  r e l a t i o n s h i p  be tween  t h e  s c a l e  o f  t h e  v e l o c i t y  v* a l o n g  
t h e  X1 and X 2 axes  w i t h  t h e  v e l o c i t y  s c a l e  a l o n g  t h e  X 3 a x i s .  Here H1, H2, and H 3 a r e  t h e  
Lame c o e f f i c i e n t s  which  we assume t o  be s u c h t h a t  t h e r e  e x i s t  t h e  H i c o n t a i n i n g  i n t e g r a l s  
which  a p p e a r  be low.  We w i l l  assume t h e  t h i c k n e s s  o f  t h e  f i l m  t o  be e q u a l  t o  E, so t h a t  
x 3 e (0, i). We will enhance Eq. (2.1) with the following conditions: 

Oc/Oxa I~=0;t = 0; ( 2 . 2  ) 

c It=0 = R ( x .  x~, x~). ( 2 . 3 )  

Other conditions necessary for complete formulation of the problem, as before, are inconse- 
quential for our analysis. We will assume v to be a small parameter and we will seek the 
solution by the method of perturbations in the form of a series over the powers of v. We 

derg~7~ the following chain of equations: 

8 (HIH20co I (2.4) 

8 r or oq_ l 
0~ \ ~ 8z3/ = Pe[u'H2H3-~-Izl + u2HxHa--f~ + uaHiH2--a-%-3 ] + (2.6) 

+ k ] \ ] '  = 2' 3 . . . . .  

where  t h e  s u b s c r i p t  i d e n t i f i e s  t h e  a p p r o x i m a t i o n  number.  Each o f  t h e s e  e q u a t i o n s  i s  s u b j e c t  
t o  c o n d i t i o n s  ( 2 . 2 )  w i t h  t h e  a p p r o p r i a t e  s u b s c r i p t  f o r  c .  From ( 2 . 4 ) ,  w i t h  c o n s i d e r a t i o n  
o f  ( 2 . 2 ) ,  we  f i n d  co = c 0 ( x z ,  x2,  T) .  Then,  f rom ( 2 . 5 ) ,  a f t e r  i n t e g r a t i o n ,  we o b t a i n  
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0% ~ H adz 0% P H adz s 
g~= PeLox-~J ~ H H--~ u~H=Ha d~ + a-~= 3 H--/~ J uaH~Ha d~ + ( 2 . 7 )  

0 0 .t 0 

+ C~ (X. X2, T), 

where the function cS ~ can be determined by continuing the described procedure. Let us 
integrate Eq. (2.6) for the case in which i = 2 over x~ within the limit (0, i). When we 
use (2.7), the continuity equation, and the condition of impenetrability of the planes z = 
0 and z = i for the liquid, we find the equation 

[ [ ~ o% o ~ ] o D., (x, x.,) ~ j  re(x1, x2)-~. ~- = -~ D~ (x~, x~) ox ~j + 

{a [D~(x~,x~,)a% ~ + Po~ ~ ~ + D~(x. x~)~j + 

[ ~%]/ +_~o m~(xl, x~)~-~ + D.,~(x~, x~)~7:jj, 

+ 

(2 .8 )  

where 

1 1 

C H2H 8 P H1H 3 

o 0 
1 C~ (2.9) 

m(xl, x2)= f H1HoHadx 3, q)(xl, x2, cz)= ~ tied% 
o 0 

1 1 

Dn @1, x2) 2 [ (:I:) (a) --  ~ ([3) 1 u 1 ((z) H 2 (a)Ha(a) ul([~)H 2 (~)Ha(~)dad~, 
0 0 

Dr2 (x 1, x2) = D21 (x 1, x~) = 
1 1 

- 2t-- J" J" 1.  (~ ) -  * (~)t< (~) H~ (~) H~ (~.) ~ (~) u~ (~) u~ (~) e~ e~, 
0 0 

Dm (xl, x2) = 
1 1 

- 2 . I r (~) - q) (8) I u2 (~) G (~) G (~-) u~ (~) G (8) g a  (8) & d~. 
0 0 

In f o r m u l a s  ( 2 . 9 )  f o r  Dij  b e n e a t h  t h e  i n t e g r a l  s i g n  we have dropped t h e  p a r a m e t e r s  xa and 
x 2, l e a v i n g  o n l y  t h e  i n t e g r a t i o n  v a r i a b l e .  Tn t h e  d e r i v a t i o n  of  t h e s e  f o r m u l a s  i t  was t h e  
f o l l o w i n g  c o n d i t i o n s  e s s e n t i a l l y  t h a t  were u sed :  

1 I 

u,H~H ~ dxa = 5 u2H1Ha dxa 
o o 

=0 

which represent the absence of an average transport of impurities in the directions of the 
x I and x 2 axes. If the "diffusion" coefficients D l and D2, which are simply averaged com- 
binations of the Lame coefficients, i.e., they have a purely geometric origin, then in the 
expressions for Dij we find velocity components and it is precisely these coefficients that 
are analogous to the Taylor coefficients [I]. The nonnegativeness of the coefficients Dll 
and D22 follows out of another form of their notation and from the conditions H i e 0, i = 
i, 2, 3: 

[ H~ dx~ 
Dn 3o t t1i t  u~II2H~ dxa ~ O. (2.zo) 
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We also have an analogous relationship for D22. It is interesting to note that the coef- 
ficients Dij in combination with (2.10) also satisfy the inequality 

DnD22~D~2 ,  ( 2 . 1 1 )  

which  in  l i n e a r  n o n e q u i l i b r i u m  t h e r m o d y n a m i c s  f o l l o w s  o u t  o f  t h e  c o n d i t i o n  o f  p o s i t i v e  d e f i n i t e -  
n e s s  f o r  t h e  e s t a b l i s h m e n t  o f  e n t r o p y  [13]  in  f u l f i l l i n g  t h e  r e c i p r o c i t y  r e l a t i o n s h i p  Dz2 = 
D21 f o r  t h e  k i n e t i c  c o e f f i c i e n t .  To p r o v e  ( 2 . 1 1 )  i t  i s  s u f f i c i e n t  in  t h e  p l a c e  o f  ulH2H 3 
b e n e a t h  t h e  s i g n  o f  t h e  i n t e r n a l  i n t e g r a l  in  ( 2 . 1 0 )  t o  s u b s t i t u t e  u~H2H 3 + pu2H~H3, and 
s i n c e  t h e  r e s u l t i n g  e x p r e s s i o n  t h a t  i s  q u a d r a t i c  w i t h  r e s p e c t  t o  p mus t  be n o n n e g a t i v e  f o r  
any  p ,  i t s  d i s c r i m i n a n t  mus t  be n o n p o s i t i v e ,  which  w i l l  t h e n  l e a d ,  a f t e r  c e r t a i n  t r a n s f o r m a -  
t i o n s ,  t o  i n e q u a l i t y  ( 2 . 1 1 ) .  

As b e f o r e ,  i n  Sec .  1, w i t h  l a r g e  v a l u e s  f o r  t h e  Pe number ,  o f  some s i g n i f i c a n c e  a r e  
t h e  l i n e s  in  t h e  x l ,  x 2 p l a n e ,  where  t h e  v e l o c i t y  componen t s  u~,  u2 v a n i s h .  Once a g a i n  
i t  becomes  p o s s i b l e  t o  c o n s t r u c t  t h e  b o u n d a r y - l a y e r  e q u a t i o n s  as  f u n c t i o n s  o f  t h e  z e r o  o r d e r s  
o f  t h e  f u n c t i o n s  u~ and u 2. I n  a n a l o g y  w i t h  Sec .  1, i t  i s  a l s o  p r o v e d  t h a t  t h e  i n i t i a l  
c o n d i t i o n  f o r  Eq. ( 2 . 8 )  w i l l  be 

1 

co IT=o = <R> = --~ R (xl, x2, x3) H1H~H a dx3. 
o 

Let us note that in our consideration of the specific coordinate systems in certain 
expressions containing the Lame coefficients the introduced parameter v appears in natural 
fashion and the corresponding formulas can be simplified as 9 ~ O. We have not done this, 
desirous of preserving the ability to interpret Eq. (2.8) as one that is asymptotic as 
T + ~ and with the nonobligatory smallness of v (see the remark in Sec. i). Let us also 
note that for the coefficients Dij we can present formulas analogous to (i.ii). These have 
a particularly simple form in the Cartesian coordinate system 

D n  = " - ~  ~ _.-'5", = ~ , D 2 2  = - -  i 3 ,  
~=i ] "= ~ j=i 

where 

1 1 

= ] u1(x. x3)cos dx , = (x. cos 
O 0 

are coefficients of the Fourier series over a system of orthogonal functions V~-cos (vjx3) , 
j = I, 2 .... , for the velocity components u I and U2. 

As examples of the practical realization of the relationships proposed in this section 
we can offer the problems of mass transport in a cellular Benard structure [13] or in a 
Taylor structure where the fluid flows between coaxial cylinders. 

3. Dispersion of an Impurity in Nonsteady Fluid Flows. The scheme for the construction 
of dispersion equations and the equations themselves do not change if the velocity compon- 
ents are functions of time within the corresponding scale. For the case of a prismatic 
tube such a problem was dealt with in [14], where the author limited himself to an analysis 
of dispersion in a periodically variable velocity profile. Employing the moment approach 
[2] and then averaging over the period of the concentration moment, he obtained a value 
for the dispersion coefficient that was independent of time and which he proposed to use 
in the equation of equivalent diffusion 

OdOt = D*O2c/Oz ~'. ( 3 . 1  ) 

In our opinion, it is more advisable to regard D* as a function of time, as follows natural- 
ly in the utilization of the above-covered algorithm. For example, for a circular tube 
in a uniform flow, when the dependence on time is not necessarily periodic, we have 
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~ dr 
D * ( t ) =  2 7 -  ~w(~, t) d , 

i 

0 

(3.2) 

where r is the radial coordinate of the cylindrical coordinate system. One would imagine 
that the fundamental significance of the theory of dispersion lies in the replacement of 
the complex equations of convective diffusion by substantially simpler equations with a 
smaller number of independent variables. These equations can be used (in determining the 
conditions of suitability) to analyze the mass-exchange processes in natural phenomena and 
in technical installations. In this connection, the construction of the equivalent equation 
of diffusion based exclusively on w of the asymptotic properties of the first two 
moments 

[x~= z~c(x,y,z,t) dz, M i = - 7 -  ~i(x,Y,t)  dx@, i = O , i ,  2, 
- - o o  O. 

as is frequently done in the literature, in particular in [14], is not convincing, since 
there is no assurance that no other (with the exception of 82c/8z 2) terms will enter the 
equation of dispersion, which would not "be noticed" by the moment approach. For example, 
the expression 83c/8z 3 under natural conditions of diminution in the concentration c and 
in its derivatives as z ~ • yields zero in calculating the moments to the third order, 
inclusively: 

~-oo 

S z~ (a3e/az s) dz = O, ~ = O, 1, 2, 

i.e., for observation of such a term one should resort to moments of higher order, and the 
validated construction of Taylor-type equations in similar situations may become extremely 
complex. 

In the case of a uniform flow in a tube the dependence on time on the part of the coeffi- 
cient D* involves no fundamental difficulties from the standpoint of analyzing the processes 
of impurity propagation on the basis of Eq. (3.1), since having introduced the "modified 

time" t*=~D*(~)dT, we obtain an ordinary equation of diffusion in a coordinate system 
0 

moving at an average velocity (along r), which in this case is dependent on time. Moreover, 
calculation of D* according to (3.2) or (i.i0), where the dependence on time w(x, y, t) 
is added to the velocity component w, but there is no dependence on z, so that this may 
turn out to be simpler than in accordance with the corresponding formulas from [14], while 
the dependence on t is rather general. In the case of nonuniform flows in elongated zones, 
the above-described reduction to an equation with a constant coefficient of diffusion is 
impossible and no significant simplifications appear even in the boundary-layer equations 
in the case of large Peclet numbers near the lines where w vanishes. 

4. Some Remarks and Additions. In the proposed equations of equivalent diffusion 
it is easy to include a number of effects which we had not taken into consideration. If 
the source of the substance of weak (on the order of E 2) intensity within the volume or 
at the boundary surfaces is given, then in Eqs. (1.9) and (2.8) they will naturally be in- 
cluded as functions of c o and, possibly, as functions of other variables. An even more 
complex condition might prevail at the surface, such as, for example, 8c/~x31 x -0 = v2g( c - 
c.~) .... (c... is the equilibrium concentration, while uhe function g (on the order of 3- unity) is ar- 
bitrary). We might also turn to coordinate systems that are nonmoving in space. In the 
case of Eq. (1.9), if we add to it a term of the form <W>Sc/Sz, where the average velocity 
<W> is independent of the longitudinal coordinate, as follows out of the continuity equation, 
then in the case of Eq. (2.8) the components of the average velocity in the convective terms 
will depend on the coordinates 

613 



1 1 

0% f 0% (' 
20 

(the velocities W, U I, and U 2 pertain to the nonmoving coordinate system). To calculate 
the coefficient of dispersion according to (i.i0) and (2.9) it is necessary to know the 
distribution of certain velocity components within the region of flow. This separate prob- 
lem is not dealt with here. However, let us note that we require the integral character- 
istics of velocity, which in a number of cases are determined more precisely than the local 
characteristics when using approximation methods. 
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